Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.12.14.571764

ABSTRACT

The 800 million human infections with SARS-CoV-2 and the likely emergence of new variants and additional coronaviruses necessitate a better understanding of the essential spike glycoprotein and the development of immunogens that foster broader and more durable immunity. The S2 fusion subunit is more conserved in sequence, is essential to function, and would be a desirable immunogen to boost broadly reactive antibodies. It is, however, unstable in structure and in its wild-type form, cannot be expressed alone without irreversible collapse into a six-helix bundle. In addition to the irreversible conformational changes of fusion, biophysical measurements indicate that spike also undergoes a reversible breathing action. However, spike in an open, -breathing- conformation has not yet been visualized at high resolution. Here we describe an S2-only antigen, engineered to remain in its relevant, pre-fusion viral surface conformation in the absence of S1. We also describe a panel of natural human antibodies specific for S2 from vaccinated and convalescent individuals. One of these mAbs, from a convalescent individual, afforded a high-resolution cryo-EM structure of the prefusion S2. The structure reveals a complex captured in an -open- conformation with greater stabilizing intermolecular interactions at the base and a repositioned fusion peptide. Together, this work provides an antigen for advancement of next-generation -booster- immunogens and illuminates the likely breathing adjustments of the coronavirus spike.

2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.11.16.566918

ABSTRACT

Understanding adaptive immunity against SARS-CoV-2 is a major requisite for the development of effective vaccines and treatments for COVID-19. CD4+ T cells play an integral role in this process primarily by generating antiviral cytokines and providing help to antibody-producing B cells. To empower detailed studies of SARS-CoV-2-specific CD4+ T cell responses in mouse models, we comprehensively mapped I-Ab-restricted epitopes for the spike and nucleocapsid proteins of the BA.1 variant of concern via IFN{gamma} ELISpot assay. This was followed by the generation of corresponding peptide:MHCII tetramer reagents to directly stain epitope-specific T cells. Using this rigorous validation strategy, we identified 6 reliably immunogenic epitopes in spike and 3 in nucleocapsid, all of which are conserved in the ancestral Wuhan strain. We also validated a previously identified epitope from Wuhan that is absent in BA.1. These epitopes and tetramers will be invaluable tools for SARS-CoV-2 antigen-specific CD4+ T cell studies in mice.


Subject(s)
COVID-19
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.10.495727

ABSTRACT

Despite the robust immunogenicity of SARS-CoV-2 mRNA vaccines, emerging data reveal enhanced neutralizing antibody and T cell cross-reactivity among individuals that previously experienced COVID-19, pointing to a hybrid immune advantage with infection-associated immune priming. Beyond neutralizing antibodies and T cell immunity, mounting data point to a potential role for additional antibody effector functions, including opsinophagocytic activity, in the resolution of symptomatic COVID-19. Whether hybrid immunity modifies the Fc-effector profile of the mRNA vaccine-induced immune response remains incompletely understood. Thus, here we profiled the SARS-CoV-2 specific humoral immune response in a group of individuals with and without prior COVID-19. As expected, hybrid Spike-specific antibody titers were enhanced following the primary dose of the mRNA vaccine, but were similar to those achieved by naive vaccinees after the second mRNA vaccine dose. Conversely, Spike-specific vaccine-induced Fc-receptor binding antibody levels were higher after the primary immunization in individuals with prior COVID-19, and remained higher following the second dose compared to naive individuals, suggestive of a selective improvement in the quality, rather than the quantity, of the hybrid humoral immune response. Thus, while the magnitude of antibody titers alone may suggest that any two antigen exposures - either hybrid immunity or two doses of vaccine alone - represent a comparable prime/boost immunologic education, we find that hybrid immunity offers a qualitatively improved antibody response able to better leverage Fc effector functions against conserved regions of the virus.


Subject(s)
COVID-19
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.17.484759

ABSTRACT

Next-generation COVID-19 vaccines are critical due to the ongoing evolution of SARS-CoV-2 virus. The mRNA vaccines mRNA-1273 and BNT162b2 were developed using linear transcripts encoding the prefusion-stabilized trimers (S-2P) of the wildtype spike, which have shown a reduced neutralizing activity against the variants of concern B.1.617.2 and B.1.1.529. Recently, a new version of spike trimers namely VFLIP has been suggested to possess native-like glycosylation, as opposed to S-2P. Here, we report that the spike protein VFLIP-X, containing six rationally substituted amino acids (K417N, L452R, T478K, E484K, N501Y and D614G), offers a promising candidate for a next-generation SARS-CoV-2 vaccine. Mice immunized by a circular mRNA (circRNA) vaccine prototype producing VFLIP-X elicited neutralizing antibodies for up to 7 weeks post-boost against SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs). In addition, a balance in TH1 and TH2 responses was achieved by the immunization with VFLIP-X. Our results indicate that the VFLIP-X delivered by circRNA confers humoral and cellular immune responses, as well as neutralizing activity against broad SARS-CoV-2 variants.


Subject(s)
COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.01.462840

ABSTRACT

Successful control of the COVID-19 pandemic depends on vaccines that prevent transmission. The full-length Spike protein is highly immunogenic but the majority of antibodies do not target the virus: ACE2 interface. In an effort to concentrate the antibody response to the receptor-binding motif (RBM) we generated a series of conformationally-constrained immunogens by inserting solvent-exposed RBM amino acid residues into hypervariable loops of an immunoglobulin molecule. Priming C57BL/6 mice with plasmid (p)DNA encoding these constructs yielded a rapid memory response to booster immunization with recombinant Spike protein. Immune sera antibodies bound strongly to the purified receptor-binding domain (RBD) and Spike proteins. pDNA primed for a consistent response with antibodies efficient at neutralizing authentic WA1 virus and two variants of concern (VOC), B.1.351 and B.1.617.2. These findings demonstrate that immunogens built on structure selection can focus the response to conserved sites of vulnerability shared between wildtype virus and VOCs and induce neutralizing antibodies across variants.


Subject(s)
COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.31.458247

ABSTRACT

The successful development of several COVID-19 vaccines has substantially reduced morbidity and mortality in regions of the world where the vaccines have been deployed. However, in the wake of the emergence of viral variants, able to evade vaccine induced neutralizing antibodies, real world vaccine efficacy has begun to show differences across the mRNA platforms, suggesting that subtle variation in immune responses induced by the BNT162b2 and mRNA1273 vaccines may provide differential protection. Given our emerging appreciation for the importance of additional antibody functions, beyond neutralization, here we profiled the postboost binding and functional capacity of the humoral response induced by the BNT162b2 and mRNA-1273 in a cohort of hospital staff. Both vaccines induced robust humoral immune responses to WT SARS-CoV-2 and VOCs. However, differences emerged across epitopespecific responses, with higher RBD- and NTD-specific IgA, as well as functional antibodies (ADNP and ADNK) in mRNA-1273 vaccine recipients. Additionally, RBD-specific antibody depletion highlighted the different roles of non-RBD-specific antibody effector function induced across the mRNA vaccines, providing novel insights into potential differences in protective immunity generated across these vaccines in the setting of newly emerging VOCs.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
7.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3832979

ABSTRACT

The robust protection conferred by SARS-CoV-2 mRNA vaccines represents a critical milestone in the COVID-19 vaccine development. However, the emergence of variants has inspired renewed concern related to the protective efficacy of currently approved vaccines, which lose neutralizing potency against some variants. However, emerging data suggest that antibody functions, beyond neutralization, may contribute to protection from disease. Thus, here we profiled the binding and functional capacity of convalescent antibodies and Moderna mRNA-1273 COVID-19 vaccine-induced antibodies across SARS-CoV-2 variants of concern (VOC). While neutralizing antibody responses are affected by VOCs, antibodies generated after infection exhibited robust binding to VOCs but compromised interactions with Fc-receptors. Conversely, vaccine-induced antibodies bound robustly to VOCs and continued interacting with Fc-receptors and mediated antibody effector functions. These data point to a previously unappreciated resilience in the mRNA vaccine-induced humoral immune response that may continue to provide protection from SARS-CoV-2 VOCs independent of neutralization.Trial Registration: This work used samples from the phase 1, dose-escalation, open-labelclinical trial designed to determine the safety, reactogenicity, and immunogenicity of mRNA-1273 (mRNA-1273 ClinicalTrials.gov number, NCT04283461 mRNA-1273 study; DOI: 10.1056/NEJMoa2022483).Funding: We acknowledge support from the Ragon Institute of MGH, MIT, and Harvard, the Massachusetts Consortium on Pathogen Readiness (MassCPR), the NIH (3R37AI080289-11S1, R01AI146785, U19AI42790-01, U19AI135995-02, U19AI42790-01, 1U01CA260476 – 01, CIVIC75N93019C00052), the Gates Foundation Global Health Vaccine Accelerator Platform funding (OPP1146996 and INV-001650), Translational Research Institute for Space Health through NASA Cooperative Agreement (NNX16AO69A), and the Musk Foundation. This work used samples from the phase 1 mRNA-1273 study (NCT04283461; DOI: 10.1056/NEJMoa2022483). The mRNA-1273 phase 1 study was sponsored and primarily funded by the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD. This trial has been funded in part with federal funds from the NIAID under grant awards UM1AI148373, to Kaiser Washington; UM1AI148576, UM1AI148684, and NIH P51 OD011132, to Emory University; NIH AID AI149644, and contract award HHSN272201500002C, to Emmes. Funding for the manufacture of mRNA-1273 phase 1 material was provided by the Coalition for Epidemic Preparedness Innovation.Declaration of Interest: G.A. is a founder of Seromyx Systems Inc. A.C. is employee of Moderna Inc. D.D., P.M., A.S.M, and E.R.M. are employees of Space Exploration Technologies Corp. All other authors have declared that no conflict of interest exists.Ethical Approval: The MGH IRB reviewed the ethics protocol for secondary use under record 2020P004042 and the project was deemed Not Human Research.


Subject(s)
COVID-19 , Communicable Diseases
8.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3821080

ABSTRACT

Recently approved vaccines have shown remarkable protection in limiting SARS-CoV-2 associated disease. However, immunologic mechanism(s) of protection, and how boosting alters immunity to wildtype and newly emerging strains, remains incompletely understood. Here we profiled the humoral immune response in a cohort of non-human primates immunized with a recombinant SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) at two dose levels, administered as a one or two-dose regimen with a saponin-based adjuvant Matrix-M™. While antigen dose had minimal effects, boosting significantly altered the humoral response, driving unique vaccine-induced antibody fingerprints. Differences in antibody effector functions and neutralization were associated with protection in the upper and lower respiratory tract, pointing to compartment-specific determinants of protective immunity against infection. Moreover, NVX-CoV2373 elicited antibodies targeting emerging SARS-CoV-2 variants. Collectively, the data presented here suggest that a single dose may prevent disease, but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants.Funding: This work was funded by Operation Warp Speed. We thank Colin Mann and Kathryn Hastie for production of Spike antigens. We thank Nancy Zimmerman, Mark and Lisa Schwartz, an anonymous donor (financial support), Terry and Susan Ragon, and the SAMANA Kay MGH Research Scholars award for their support. We acknowledge support from the Ragon Institute of MGH, MIT and Harvard, the Massachusetts Consortium on Pathogen Readiness (Mass CPR), the NIH (3R37AI080289-11S1, R01AI146785, U19AI42790-01, U19AI135995-02, U19AI42790-01, 1U01CA260476 – 01, CIVIC75N93019C00052), National Science Foundation Graduate Research Fellowship Grant No. #1745302, the Gates foundation Global Health Vaccine Accelerator Platform funding (OPP1146996 and INV-001650), and the Musk Foundation.Conflict of Interest: NP, MGX, JHT, BZ, SM, AMG, MJM, ADP, GG, GS, and LE are current or past employees of Novavax, Inc. and have stock options in the company. GA is the founder of Serom Yx Systems, Inc. AZ is a current employee of Moderna, Inc. but conducted this work before employment.Any opinion, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. YG, RC, MJG, CA, KMP, CL, DY, KB, MEM, JL, DM, CM, SS, FA, FK, EOS, DL, and MBF declare no competing interest.Ethical Approval: The work was conducted in accordance with a protocol approved by Texas Biomed’s Institutional Animal Care and Use Committee. All subjects signed informed consent and safety oversight was monitored by a data monitoring board.


Subject(s)
Myotonic Dystrophy , Adenomatous Polyposis Coli
9.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-200342.v1

ABSTRACT

Recently approved vaccines have already shown remarkable protection in limiting SARS-CoV-2 associated disease. However, immunologic mechanism(s) of protection, as well as how boosting alters immunity to wildtype and newly emerging strains, remain incompletely understood. Here we deeply profiled the humoral immune response in a cohort of non-human primates immunized with a stable recombinant full-length SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) at two dose levels, administered as a single or two-dose regimen with a saponin-based adjuvant Matrix-M™. While antigen dose had some effect on Fc-effector profiles, both antigen dose and boosting significantly altered overall titers, neutralization and Fc-effector profiles, driving unique vaccine-induced antibody fingerprints. Combined differences in antibody effector functions and neutralization were strongly associated with distinct levels of protection in the upper and lower respiratory tract, pointing to the presence of combined, but distinct, compartment-specific neutralization and Fc-mechanisms as key determinants of protective immunity against infection. Moreover, NVX-CoV2373 elicited antibodies functionally target emerging SARS-CoV-2 variants, collectively pointing to the critical collaborative role for Fab and Fc in driving maximal protection against SARS-CoV-2. Collectively, the data presented here suggest that a single dose may prevent disease, but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants.

SELECTION OF CITATIONS
SEARCH DETAIL